Dual mechanism of chromatin remodeling in the common shrew sex trivalent (XY 1Y 2)

نویسندگان

  • Sergey N. Matveevsky
  • Svetlana V. Pavlova
  • Maret M. Atsaeva
  • Jeremy B. Searle
  • Oxana L. Kolomiets
چکیده

Here we focus on the XY1Y2 condition in male common shrew Sorex araneus Linnaeus, 1758, applying electron microscopy and immunocytochemistry for a comprehensive analysis of structure, synapsis and behaviour of the sex trivalent in pachytene spermatocytes. The pachytene sex trivalent consists of three distinct parts: short and long synaptic SC fragments (between the X and Y1 and between the X and Y2, respectively) and a long asynaptic region of the X in-between. Chromatin inactivation was revealed in the XY1 synaptic region, the asynaptic region of the X and a very small asynaptic part of the Y2. This inactive part of the sex trivalent, that we named the 'head', forms a typical sex body and is located at the periphery of the meiotic nucleus at mid pachytene. The second part or 'tail', a long region of synapsis between the X and Y2 chromosomes, is directed from the periphery into the nucleus. Based on the distribution patterns of four proteins involved in chromatin inactivation, we propose a model of meiotic silencing in shrew sex chromosomes. Thus, we conclude that pachytene sex chromosomes are structurally and functionally two different chromatin domains with specific nuclear topology: the peripheral inactivated 'true' sex chromosome regions (part of the X and the Y1) and more centrally located transcriptionally active autosomal segments (part of the X and the Y2).

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Recombination map of the common shrew, Sorex araneus (Eulipotyphla, Mammalia).

The Eurasian common shrew (Sorex araneus L.) is characterized by spectacular chromosomal variation, both autosomal variation of the Robertsonian type and an XX/XY(1)Y(2) system of sex determination. It is an important mammalian model of chromosomal and genome evolution as it is one of the few species with a complete genome sequence. Here we generate a high-precision cytological recombination ma...

متن کامل

I-18: The Role of Sex Chromosomes in Female Germ Cell Differentiation

Background When gonadal sex reversal occurs in mammalian species, the resultant XX males and XY females become infertile or subfertile, suggesting critical roles of sex chromosomes in germ cell differentiation. The objective of our study is to clarify the mechanism of infertility in the B6.YTIR (XY) sex-reversed female mouse, which can be attributed to a failure in the second meiotic division i...

متن کامل

I-17: The Mechanism of Gonadal Sex Determination

Background In mammals, a single exon gene SRY on the Y-chromosome is activated in the XY gonadal primordium and initiates a cascade of molecular and morphological events leading to testicular differentiation. SRY-encoded protein (SRY) is a transcription factor harboring a HMG-box DNAbinding motif that upregulates SOX9, which encodes another transcription factor sharing the DNA binding motif wit...

متن کامل

P-19: Association of Poor Chromatin Remodeling with Cytosolic ROS and Mitochondrial ROS in Sperm of Infertile Men

Background: Cytoplasm and mitochondria are considered as the major origins of sperm ROS production. Sperm is prone to DNA damage by exposure to ROS or due impaired chromatin remodeling or low DNA protamination. Therefore, the aim of this study was to see if there is any association between impaired chromatin packaging and origin of ROS production. Materials and Methods: Cytosolic ROS, mitochond...

متن کامل

Enhanced chromatin accessibility of the dosage compensated Drosophila male X-chromosome requires the CLAMP zinc finger protein

The essential process of dosage compensation is required to equalize gene expression of X-chromosome genes between males (XY) and females (XX). In Drosophila, the conserved Male-specific lethal (MSL) histone acetyltransferase complex mediates dosage compensation by increasing transcript levels from genes on the single male X-chromosome approximately two-fold. Consistent with its increased level...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 11  شماره 

صفحات  -

تاریخ انتشار 2017